

Passive and active bridge monitoring

Chun-Man LIAO ¹, Felix BERNAUER ², Celine HADZIIOANNOU ³ and Daniel FONTOURA BARROSO ¹

¹ Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin Germany
² Ludwig-Maximilians-University, Munich, Germany
³ University of Hamburg, Hamburg, Germany

Kontakt E-Mail: chun-man.liao@bam.de, fbernauer@geophysik.uni-muenchen.de, celine.hadziioannou@uni-hamburg.de, daniel.barroso@bam.de

Kurzfassung

Prestressing techniques are commonly used in civil infrastructures such as long-span bridges to maintain the structural performance in their designed lifetime. However, the pre-stress loss cannot be avoided. Thus, the bridge monitoring becomes important in civil engineering. A preliminary investigation of the coda wave interferometry (CWI) method for identifying the pre-stress loss in a large-scale prestressed bridge model is presented. The passive and active measurements have been carried out in in-situ test at the structure – BLEIB. As a result, the wave velocity change reveals the influence of the pre-stress change and the correlation coefficients contribute to develop local damage detection.

Passive and active bridge monitoring

Bundesanstalt für Materialforschung und -prüfung

Chun-Man Liao¹, Felix Bernauer², Celine Hadziioannou³ and Daniel Fontoura Barroso¹

- ¹Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin, Germany
- ²Ludwig-Maximilians-University, Munich, Germany
- ³ University of Hamburg, Hamburg, Germany

Abstract

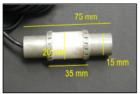
This research is to perform passive and active measurements on a large-scale prestressed concrete bridge model under the outdoor condition. Multi sensors were applied to this test structure -BLEIB, which is located at the BAM test site. The experimental evaluation of ultrasonic wave propagation and seismic noise recordings were considered for revealing the bridge damage condition, as a basic for developing a reliable bridge monitoring

Experiment setup

Various loads by iron bars: 300, 600, 900 kg

Vibration test Hammer hit by free-drop weight

Prestressing test. Built-in post-tensioning system

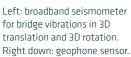


Prestressing test Prestressing forces Adjustment

Sensors and measurements

Active monitoring by ultrasonic measurements

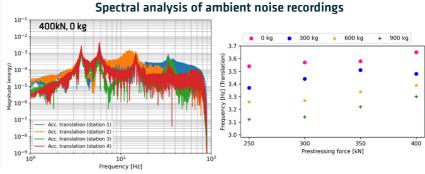
- Ultrasonic wave velocity change
- Detection of prestressing force change



Left: ultrasonic transducer ACSYS S0807 [1] embedded in concrete. Right: ultrasonic monitoring system.

Passive monitoring by vibration measurements

- Eigenfrequencies vs. load effects
- Eigenfrequencies vs. prestressing force change



[1] Niederleithinger, E., Wolf, J., Mielentz, F., Wiggenhauser, H., & Pirskawetz, S (2015). Embedded Ultrasonic Transducers for Active and Passive Concrete Monitoring Sensors (Switzerland), 15(5), 9756–9772. https://doi.org/10.3390/s150509756

Evaluation

Coda Wave Interferometry (CWI) of ultrasonics 2021-10-15 × 1.1 E 1.0 0.25 -0.25 0.5 0.4 0.3 250 250 200

Prestressing force [kN]

